Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Heliyon ; 9(2): e13103, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2282898

ABSTRACT

Despite a growing amount of data around the kinetics and durability of the antibody response induced by vaccination and previous infection, there is little understanding of whether or not a given quantitative level of antibodies correlates to protection against SARS-CoV-2 infection or reinfection. In this study, we examine SARS-CoV-2 anti-spike receptor binding domain (RBD) antibody titers and subsequent SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) tests in a large cohort of US-based patients. We analyzed antibody test results in a cohort of 22,204 individuals, 6.8% (n = 1,509) of whom eventually tested positive for SARS-CoV-2 RNA, suggesting infection or reinfection. Kaplan-Meier curves were plotted to understand the effect of various levels of anti-spike RBD antibody titers (classified into discrete ranges) on subsequent RT-PCR positivity rates. Statistical analyses included fitting a Cox proportional hazards model to estimate the age-, sex- and exposure-adjusted hazard ratios for S antibody titer, using zip-code positivity rates by week as a proxy for COVID-19 exposure. It was found that the best models of the temporally associated infection risk were those based on log antibody titer level (HR = 0.836 (p < 0.05)). When titers were binned, the hazard ratio associated with antibody titer >250 Binding Antibody Units (BAU) was 0.27 (p < 0.05, 95% CI [0.18, 0.41]), while the hazard ratio associated with previous infection was 0.20 (p < 0.05, 95% CI [0.10, 0.39]). Fisher exact odds ratio (OR) for Ab titers <250 BAU showed OR = 2.84 (p < 0.05; 95% CI: [2.30, 3.53]) for predicting the outcome of a subsequent PCR test. Antibody titer levels correlate with protection against subsequent SARS-CoV-2 infection or reinfection when examining a cohort of real-world patients who had the spike RBD antibody assay performed.

2.
Heliyon ; 9(1): e12753, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2264393

ABSTRACT

Background: Misconceptions about adverse side effects are thought to influence public acceptance of the Coronavirus disease 2019 (COVID-19) vaccines negatively. To address such perceived disadvantages of vaccines, a novel machine learning (ML) approach was designed to generate personalized predictions of the most common adverse side effects following injection of six different COVID-19 vaccines based on personal and health-related characteristics. Methods: Prospective data of adverse side effects following COVID-19 vaccination in 19943 participants from Iran and Switzerland was utilized. Six vaccines were studied: The AZD1222, Sputnik V, BBIBP-CorV, COVAXIN, BNT162b2, and the mRNA-1273 vaccine. The eight side effects were considered as the model output: fever, fatigue, headache, nausea, chills, joint pain, muscle pain, and injection site reactions. The total input parameters for the first and second dose predictions were 46 and 54 features, respectively, including age, gender, lifestyle variables, and medical history. The performances of multiple ML models were compared using Area Under the Receiver Operating Characteristic Curve (ROC-AUC). Results: The total number of people receiving the first dose of the AZD1222, Sputnik V, BBIBP-CorV, COVAXIN, BNT162b2, and mRNA-1273 were 6022, 7290, 5279, 802, 277, and 273, respectively. For the second dose, the numbers were 2851, 5587, 3841, 599, 242 and 228. The Logistic Regression model for predicting different side effects of the first dose achieved ROC-AUCs of 0.620-0.686, 0.685-0.716, 0.632-0.727, 0.527-0.598, 0.548-0.655, 0.545-0.712 for the AZD1222, Sputnik V, BBIBP-CorV, COVAXIN, BNT162b2 and mRNA-1273 vaccines, respectively. The second dose models yielded ROC-AUCs of 0.777-0.867, 0.795-0.848, 0.857-0.906, 0.788-0.875, 0.683-0.850, and 0.486-0.680, respectively. Conclusions: Using a large cohort of recipients vaccinated with COVID-19 vaccines, a novel and personalized strategy was established to predict the occurrence of the most common adverse side effects with high accuracy. This technique can serve as a tool to inform COVID-19 vaccine selection and generate personalized factsheets to curb concerns about adverse side effects.

3.
Heliyon ; 9(1): e12704, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2165332

ABSTRACT

Critically ill patients infected with SARS-CoV-2 display adaptive immunity, but it is unknown if they develop cross-reactivity to variants of concern (VOCs). We profiled cross-immunity against SARS-CoV-2 VOCs in naturally infected, non-vaccinated, critically ill COVID-19 patients. Wave-1 patients (wild-type infection) were similar in demographics to Wave-3 patients (wild-type/alpha infection), but Wave-3 patients had higher illness severity. Wave-1 patients developed increasing neutralizing antibodies to all variants, as did patients during Wave-3. Wave-3 patients, when compared to Wave-1, developed more robust antibody responses, particularly for wild-type, alpha, beta and delta variants. Within Wave-3, neutralizing antibodies were significantly less to beta and gamma VOCs, as compared to wild-type, alpha and delta. Patients previously diagnosed with cancer or chronic obstructive pulmonary disease had significantly fewer neutralizing antibodies. Naturally infected ICU patients developed adaptive responses to all VOCs, with greater responses in those patients more likely to be infected with the alpha variant, versus wild-type.

4.
J King Saud Univ Sci ; 35(1): 102402, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2086459

ABSTRACT

Objectives: We performed a virtual screening of olive secoiridoids of the OliveNetTM library to predict SARS-CoV-2 PLpro inhibition. Benchmarked molecular docking protocol that evaluated the performance of two docking programs was applied to execute virtual screening. Molecular dynamics stability analysis of the top-ranked olive secoiridoid docked to PLpro was also carried out. Methods: Benchmarking virtual screening used two freely available docking programs, AutoDock Vina 1.1.2. and AutoDock 4.2.1. for molecular docking of olive secoiridoids to a single PLpro structure. Screening also included benchmark structures of known active and decoy molecules from the DEKOIS 2.0 library. Based on the predicted binding energies, the docking programs ranked the screened molecules. We applied the usual performance evaluation metrices to evaluate the docking programs using the predicted ranks. Molecular dynamics of the top-ranked olive secoiridoid bound to PLpro and computation of MM-GBSA energy using three iterations during the last 50 ps of the analysis of the dynamics in Desmond supported the stability prediction. Results and discussions: Predictiveness curves suggested that AutoDock Vina has a better predictive ability than AutoDock, although there was a moderate correlation between the active molecules rankings (Kendall's correlation of rank (τ) = 0.581). Interestingly, two same molecules, Demethyloleuropein aglycone, and Oleuroside enriched the top 1 % ranked olive secoiridoids predicted by both programs. Demethyloleuropein aglycone bound to PLpro obtained by docking in AutoDock Vina when analyzed for stability by molecular dynamics simulation for 50 ns displayed an RMSD, RMSF<2 Å, and MM-GBSA energy of -94.54 ± 6.05 kcal/mol indicating good stability. Molecular dynamics also revealed the interactions of Demethyloleuropein aglycone with binding sites 2 and 3 of PLpro, suggesting a potent inhibition. In addition, for 98 % of the simulation time, two phenolic hydroxy groups of Demethyloleuropein aglycone maintained two hydrogen bonds with Asp302 of PLpro, specifying the significance of the groups in receptor binding. Conclusion: AutoDock Vina retrieved the active molecules accurately and predicted Demethyloleuropein aglycone as the best inhibitor of PLpro. The Arabian diet consisting of olive products rich in secoiridoids benefits from the PLpro inhibition property and reduces the risk of viral infection.

5.
Brain Behav Immun Health ; 26: 100511, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2031153

ABSTRACT

Reduced awareness of neuropsychological disorders (i.e., anosognosia) is a striking symptom of post-COVID-19 condition. Some leukocyte markers in the acute phase may predict the presence of anosognosia in the chronic phase, but they have not yet been identified. This study aimed to determine whether patients with anosognosia for their memory deficits in the chronic phase presented specific leukocyte distribution in the acute phase, and if so, whether these leukocyte levels might be predictive of anosognosia. First, we compared the acute immunological data (i.e., white blood cell differentiation count) of 20 patients who displayed anosognosia 6-9 months after being infected with SARS-CoV-2 (230.25 ± 46.65 days) versus 41 patients infected with SARS-Cov-2 who did not develop anosognosia. Second, we performed an ROC analysis to evaluate the predictive value of the leukocyte markers that emerged from this comparison. Blood circulating monocytes (%) in the acute phase of SARS-CoV-2 infection were associated with long-term post-COVID-19 anosognosia. A monocyte percentage of 7.35% of the total number of leukocytes at admission seemed to predict the presence of chronic anosognosia 6-9 months after infection.

6.
Gene Rep ; 28: 101641, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1936453

ABSTRACT

Coronavirus disease 2019 (COVID-19) is regarded as a challenge in health system. Several studies have assessed the immune-related aspect of this disorder to identify the host-related factors that affect the course of COVID-19. microRNAs (miRNAs) as potent regulators of immune responses have gained much attention in this regard. Recent studies have shown aberrant expression of miRNAs in COVID-19 in association with disease course. Differentially expressed miRNAs have been enriched in pathways related with inflammation and antiviral immune response. miRNAs have also been regarded as potential therapeutic targets in COVID-19, particularly for management of pathological consequences of COVID-19. In the current review, we summarize the data about dysregulation of miRNAs in COVID-19.

7.
Gene Rep ; 27: 101597, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1747987

ABSTRACT

The coronavirus disease (COVID-19) pandemic caused by SARS-CoV-2 is ongoing. Individuals with sarcoidosis tend to develop severe COVID-19; however, the underlying pathological mechanisms remain elusive. To determine common transcriptional signatures and pathways between sarcoidosis and COVID-19, we investigated the whole-genome transcriptome of peripheral blood mononuclear cells (PBMCs) from patients with COVID-19 and sarcoidosis and conducted bioinformatic analysis, including gene ontology and pathway enrichment, protein-protein interaction (PPI) network, and gene regulatory network (GRN) construction. We identified 33 abnormally expressed genes that were common between COVID-19 and sarcoidosis. Functional enrichment analysis showed that these differentially expressed genes were associated with cytokine production involved in the immune response and T cell cytokine production. We identified several hub genes from the PPI network encoded by the common genes. These hub genes have high diagnostic potential for COVID-19 and sarcoidosis and can be potential biomarkers. Moreover, GRN analysis identified important microRNAs and transcription factors that regulate the common genes. This study provides a novel characterization of the transcriptional signatures and biological processes commonly dysregulated in sarcoidosis and COVID-19 and identified several critical regulators and biomarkers. This study highlights a potential pathological association between COVID-19 and sarcoidosis, establishing a theoretical basis for future clinical trials.

8.
IJID Reg ; 2: 191-197, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1639444

ABSTRACT

Background: Data on biochemical markers and their association with mortality rates in patients with severe coronavirus disease 2019 (COVID-19) admitted to intensive care units (ICUs) in sub-Saharan Africa are scarce. An evaluation of baseline routine biochemical parameters was performed in COVID-19 patients admitted to the ICU, in order to identify prognostic biomarkers. Methods: Demographic, clinical, and laboratory data were collected prospectively from patients with PCR-confirmed COVID-19 admitted to the adult ICU of a tertiary hospital in Cape Town, South Africa, between October 2020 and February 2021. Robust Poisson regression methods and the receiver operating characteristic (ROC) curve were used to explore the association of biochemical parameters with severity and mortality. Results: A total of 82 patients (median age 53.8 years, interquartile range 46.4-59.7 years) were enrolled, of whom 55 (67%) were female and 27 (33%) were male. The median duration of ICU stay was 10 days (interquartile range 5-14 days); 54/82 patients died (66% case fatality rate). Baseline lactate dehydrogenase (LDH) (adjusted relative risk 1.002, 95% confidence interval 1.0004-1.004; P = 0.016) and N-terminal pro B-type natriuretic peptide (NT-proBNP) (adjusted relative risk 1.0004, 95% confidence interval 1.0001-1.0007; P = 0.014) were both found to be independent risk factors of a poor prognosis, with optimal cut-off values of 449.5 U/l (sensitivity 100%, specificity 43%) and 551 pg/ml (sensitivity 49%, specificity 86%), respectively. Conclusions: LDH and NT-proBNP appear to be promising predictors of a poor prognosis in COVID-19 patients in the ICU. Studies with a larger sample size are required to confirm the validity of this combination of biomarkers.

9.
J Mass Spectrom Adv Clin Lab ; 21: 31-41, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1401638

ABSTRACT

More than a year after the COVID-19 pandemic was declared, the need still exists for accurate, rapid, inexpensive and non-invasive diagnostic methods that yield high specificity and sensitivity towards the current and newly emerging SARS-CoV-2 strains. Compared to the nasopharyngeal swabs, several studies have established saliva as a more amenable specimen type for early detection of SARS-CoV-2. Considering the limitations and high demand for COVID-19 testing, we employed MALDI-ToF mass spectrometry in the analysis of 60 gargle samples from human donors and compared the resultant spectra against COVID-19 status. Several standards, including isolated human serum immunoglobulins, and controls, such as pre-COVID-19 saliva and heat inactivated SARS-CoV-2 virus, were simultaneously analyzed to provide a relative view of the saliva and viral proteome as they would appear in this workflow. Five potential biomarker peaks were established that demonstrated high concordance with COVID-19 positive individuals. Overall, the agreement of these results with RT-qPCR testing on nasopharyngeal swabs was ≥90% for the studied cohort, which consisted of young and largely asymptomatic student athletes. From a clinical standpoint, the results from this pilot study suggest that MALDI-ToF could be used to develop a relatively rapid and inexpensive COVID-19 assay.

10.
Pract Lab Med ; 25: e00222, 2021 May.
Article in English | MEDLINE | ID: covidwho-1193450

ABSTRACT

Serological testing is a tool to predict protection against later infection. This potential heavily relies on antibody levels showing acceptable agreement with gold standard virus neutralization tests. The aim of our study was to investigate diagnostic value of the available serological tests in terms of predicting virus neutralizing activity of serum samples drawn 5-7 weeks after onset of symptoms from 101 donors with a history of COVID-19. Immune responses against Receptor Binding Domain (RBD), Spike1 and 2 proteins and Nucleocapsid antigens were measured by various ELISA tests. Neutralizing antibody activity in serum samples was assessed by a cell-based virus neutralization test. Spearman correlation coefficients between serological and neutralization results ranged from 0.41 to 0.91 indicating moderate to strong correlation between ELISA test results and virus neutralization. The sensitivity and specificity of ELISA tests in the prediction of neutralization were 35-100% and 35-90% respectively. No clear cut off levels can be established that would reliably indicate neutralization activity. For some tests, however, a value below which the sample is not expected to neutralize can be established. Our data suggests that several of the ELISA kits tested may be suitable for epidemiological surveys 1-2 months after the infection, estimating whether a person may have recently exposed to the virus. Sensitivities considerably superseding specificity at the cut-off values proposed by the manufacturers suggest greater potential in the identification of insufficient antibody responses than in confirming protection. Nevertheless, the former might be important in assessing response to vaccination and characterizing therapeutic plasma preparations.

11.
J King Saud Univ Sci ; 33(4): 101439, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1185114

ABSTRACT

By the end of year 2019, the new virus SARS-CoV-2 appeared, causing the Coronavirus Disease 2019 (COVID-19), and spread very fast globally. A continuing need for diagnostic tools is a must to contain its spread. Till now, the gold standard method, the reverse transcription polymerase chain reaction (RT-PCR), is the precise procedure to detect the virus. However, SARS-CoV-2 may escape RT-PCR detection for several reasons. The development of well-designed, specific and sensitive serological test like enzyme immunoassay (EIA) is needed. This EIA can stand alone or work side by side with RT-PCR. In this study, we developed several EIAs including plates that are coated with either specially designed SARS-CoV-2 nucleocapsid or surface recombinant proteins. Each protein type can separately detect anti-SARS-CoV-2 IgM or IgG antibodies. For each EIAs, the cut-off value, specificity and sensitivity were determined utilizing RT-PCR confirmed Covid-19 and pre-pandemic healthy and other viruses-infected sera. Also, the receiver operator characteristic (ROC) analysis was performed to define the specificities and sensitivities of the optimized assay. The in-house EIAs were validated by comparing against commercial EIA kits. All in-house EIAs showed high specificity (98-99%) and sensitivity (97.8-98.9%) for the detection of IgG/IgM against RBD and N proteins of SARS-CoV-2. From these results, the developed Anti-RBD and anti-N IgG and IgM antibodies EIAs can be used as a specific and sensitive tool to detect SARS-CoV-2 infection, calculate the burden of disease and case fatality rates.

12.
Med Clin (Engl Ed) ; 156(7): 324-331, 2021 Apr 09.
Article in English | MEDLINE | ID: covidwho-1164195

ABSTRACT

BACKGROUND: The aim of this study was to evaluate hyperferritinemia could be a predicting factor of mortality in hospitalized patients with coronavirus disease-2019 (COVID-19). METHODS: A total of 100 hospitalized patients with COVID-19 in intensive care unit (ICU) were enrolled and classified into moderate (n = 17), severe (n = 40) and critical groups (n = 43). Clinical information and laboratory results were collected and the concentrations of ferritin were compared among different groups. The association between ferritin and mortality was evaluated by logistic regression analysis. Moreover, the efficiency of the predicting value was assessed using receiver operating characteristic (ROC) curve. RESULTS: The amount of ferritin was significantly higher in critical group compared with moderate and severe groups. The median of ferritin concentration was about three times higher in death group than survival group (1722.25 µg/L vs. 501.90 µg/L, p < 0.01). The concentration of ferritin was positively correlated with other inflammatory cytokines, such as interleukin (IL)-8, IL-10, C-reactive protein (CRP) and tumor necrosis factor (TNF)-α. Logistic regression analysis demonstrated that ferritin was an independent predictor of in-hospital mortality. Especially, high-ferritin group was associated with higher incidence of mortality, with adjusted odds ratio of 104.97 [95% confidence interval (CI) 2.63-4185.89; p = 0.013]. Moreover, ferritin had an advantage of discriminative capacity with the area under ROC (AUC) of 0.822 (95% CI 0.737-0.907) higher than procalcitonin and CRP. CONCLUSION: The ferritin measured at admission may serve as an independent factor for predicting in-hospital mortality in patients with COVID-19 in ICU.


ANTECEDENTES: El objetivo de este estudio fue evaluar si la hiperferritinemia podría ser un factor predictivo de la mortalidad en pacientes hospitalizados con enfermedad por coronavirus de 2019 (COVID-19). MÉTODOS: Se incluyó un total de 100 pacientes hospitalizados con COVID-19 en la unidad de cuidados intensivos (UCI), clasificándose como grupos moderado (n = 17), grave (n = 40) y crítico (n = 43). Se recopiló la información clínica y de laboratorio, comparándose los niveles de ferritina entre los diferentes grupos. Se evaluó la asociación entre ferritina y mortalidad mediante un análisis de regresión logística. Además, se evaluó la eficacia del valor predictivo utilizando la curva ROC (receiver operating characteristic). RESULTADOS: La cantidad de ferritina fue significativamente superior en el grupo de pacientes críticos en comparación con el grupo de pacientes graves. La media de concentración de ferritina fue cerca de 3 veces superior en el grupo de muerte que en el grupo de supervivientes (1.722,25 µg/L vs. 501,90 µg/L, p < 0,01). La concentración de ferritina guardó una correlación positiva con otras citoquinas inflamatorias tales como interleucina (IL)-8, IL-10, proteína C reactiva (PRC) y factor de necrosis tumoral (TNF)-α. El análisis de regresión logística demostró que la ferritina era un factor predictivo independiente de la mortalidad intrahospitalaria. En especial, el grupo de ferritina alta estuvo asociado a una mayor incidencia de la mortalidad, con un valor de odds ratio ajustado de 104,97 [intervalo de confianza (IC) del 95% 2,63-4.185,89; p = 0,013]. Además, el valor de ferritina tuvo una ventaja de capacidad discriminativa en el área bajo la curva ROC (AUC) de 0,822 (IC 95% 0,737-0,907] superior al de procalcitonina y PRC. CONCLUSIÓN: El valor de ferritina medido durante el ingreso puede servir de factor independiente para prevenir la mortalidad intrahospitalaria en los pacientes de COVID-19 en la UCI.

13.
Biomed Signal Process Control ; 68: 102583, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1163451

ABSTRACT

Due to the unforeseen turn of events, our world has undergone another global pandemic from a highly contagious novel coronavirus named COVID-19. The novel virus inflames the lungs similarly to Pneumonia, making it challenging to diagnose. Currently, the common standard to diagnose the virus's presence from an individual is using a molecular real-time Reverse-Transcription Polymerase Chain Reaction (rRT-PCR) test from fluids acquired through nasal swabs. Such a test is difficult to acquire in most underdeveloped countries with a few experts that can perform the test. As a substitute, the widely available Chest X-Ray (CXR) became an alternative to rule out the virus. However, such a method does not come easy as the virus still possesses unknown characteristics that even experienced radiologists and other medical experts find difficult to diagnose through CXRs. Several studies have recently used computer-aided methods to automate and improve such diagnosis of CXRs through Artificial Intelligence (AI) based on computer vision and Deep Convolutional Neural Networks (DCNN), which some require heavy processing costs and other tedious methods to produce. Therefore, this work proposed the Fused-DenseNet-Tiny, a lightweight DCNN model based on a densely connected neural network (DenseNet) truncated and concatenated. The model trained to learn CXR features based on transfer learning, partial layer freezing, and feature fusion. Upon evaluation, the proposed model achieved a remarkable 97.99 % accuracy, with only 1.2 million parameters and a shorter end-to-end structure. It has also shown better performance than some existing studies and other massive state-of-the-art models that diagnosed COVID-19 from CXRs.

14.
Gene Rep ; 21: 100956, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1023579

ABSTRACT

Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infection is a leading cause of pneumonia and death. The aim of this investigation is to identify the key genes in SARS-CoV-2 infection and uncover their potential functions. We downloaded the expression profiling by high throughput sequencing of GSE152075 from the Gene Expression Omnibus database. Normalization of the data from primary SARS-CoV-2 infected samples and negative control samples in the database was conducted using R software. Then, joint analysis of the data was performed. Pathway and Gene ontology (GO) enrichment analyses were performed, and the protein-protein interaction (PPI) network, target gene - miRNA regulatory network, target gene - TF regulatory network of the differentially expressed genes (DEGs) were constructed using Cytoscape software. Identification of diagnostic biomarkers was conducted using receiver operating characteristic (ROC) curve analysis. 994 DEGs (496 up regulated and 498 down regulated genes) were identified. Pathway and GO enrichment analysis showed up and down regulated genes mainly enriched in the NOD-like receptor signaling pathway, Ribosome, response to external biotic stimulus and viral transcription in SARS-CoV-2 infection. Down and up regulated genes were selected to establish the PPI network, modules, target gene - miRNA regulatory network, target gene - TF regulatory network revealed that these genes were involved in adaptive immune system, fluid shear stress and atherosclerosis, influenza A and protein processing in endoplasmic reticulum. In total, ten genes (CBL, ISG15, NEDD4, PML, REL, CTNNB1, ERBB2, JUN, RPS8 and STUB1) were identified as good diagnostic biomarkers. In conclusion, the identified DEGs, hub genes and target genes contribute to the understanding of the molecular mechanisms underlying the advancement of SARS-CoV-2 infection and they may be used as diagnostic and molecular targets for the treatment of patients with SARS-CoV-2 infection in the future.

15.
Prev Med Rep ; 21: 101298, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-989028

ABSTRACT

BACKGROUND: Healthcare systems are under prominent stress due to the COVID-19 pandemic. A fast and simple triage is mandatory to screen patients who will benefit from early hospitalization, from those that can be managed as outpatients. There is a lack of all-comers scores, and no score has been proposed for western-world population. AIMS: To develop a fast-track risk score valid for every COVID-19 patient at diagnosis. METHODS: Single-center, retrospective study based on all the inhabitants of a healthcare area. Logistic regression was used to identify simple and wide-available risk factors for adverse events (death, intensive care admission, invasive mechanical ventilation, bleeding > BARC3, acute renal injury, respiratory insufficiency, myocardial infarction, acute heart failure, pulmonary emboli, or stroke). RESULTS: Of the total healthcare area population, 447.979 inhabitants, 965 patients (0.22%), were diagnosed with COVID-19. A total of 124 patients (12.85%) experienced adverse events. The novel SODA score (based on sex, peripheral O2 saturation, presence of diabetes, and age) demonstrated good accuracy for adverse events prediction (area under ROC curve 0.858, CI: 0.82-0.98). A cut-off value of ≤2 points identifies patients with low risk (positive predictive value [PPV] for absence of events: 98.9%) and a cut-off of ≥5 points, high-risk patients (PPV 58.8% for adverse events). CONCLUSIONS: This quick and easy score allows fast-track triage at the moment of diagnosis for COVID-19 using four simple variables: age, sex, SpO2, and diabetes. SODA score could improve preventive measures taken at diagnosis in high-risk patients and also relieve resources by identifying very low-risk patients.

16.
JACC Cardiovasc Imaging ; 13(11): 2287-2299, 2020 11.
Article in English | MEDLINE | ID: covidwho-133405

ABSTRACT

Objectives: The aim of this study was to investigate whether right ventricular longitudinal strain (RVLS) was independently predictive of higher mortality in patients with coronavirus disease-2019 (COVID-19). Background: RVLS obtained from 2-dimensional speckle-tracking echocardiography has been recently demonstrated to be a more accurate and sensitive tool to estimate right ventricular (RV) function. The prognostic value of RVLS in patients with COVID-19 remains unknown. Methods: One hundred twenty consecutive patients with COVID-19 who underwent echocardiographic examinations were enrolled in our study. Conventional RV functional parameters, including RV fractional area change, tricuspid annular plane systolic excursion, and tricuspid tissue Doppler annular velocity, were obtained. RVLS was determined using 2-dimensional speckle-tracking echocardiography. RV function was categorized in tertiles of RVLS. Results: Compared with patients in the highest RVLS tertile, those in the lowest tertile were more likely to have higher heart rate; elevated levels of D-dimer and C-reactive protein; more high-flow oxygen and invasive mechanical ventilation therapy; higher incidence of acute heart injury, acute respiratory distress syndrome, and deep vein thrombosis; and higher mortality. After a median follow-up period of 51 days, 18 patients died. Compared with survivors, nonsurvivors displayed enlarged right heart chambers, diminished RV function, and elevated pulmonary artery systolic pressure. Male sex, acute respiratory distress syndrome, RVLS, RV fractional area change, and tricuspid annular plane systolic excursion were significant univariate predictors of higher risk for mortality (p < 0.05 for all). A Cox model using RVLS (hazard ratio: 1.33; 95% confidence interval [CI]: 1.15 to 1.53; p < 0.001; Akaike information criterion = 129; C-index = 0.89) was found to predict higher mortality more accurately than a model with RV fractional area change (Akaike information criterion = 142, C-index = 0.84) and tricuspid annular plane systolic excursion (Akaike information criterion = 144, C-index = 0.83). The best cutoff value of RVLS for prediction of outcome was -23% (AUC: 0.87; p < 0.001; sensitivity, 94.4%; specificity, 64.7%). Conclusions: RVLS is a powerful predictor of higher mortality in patients with COVID-19. These results support the application of RVLS to identify higher risk patients with COVID-19.


Subject(s)
Coronavirus Infections/complications , Echocardiography, Doppler , Pneumonia, Viral/complications , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Function, Right , Adult , Aged , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Predictive Value of Tests , Prognosis , Risk Assessment , Risk Factors , Ventricular Dysfunction, Right/etiology , Ventricular Dysfunction, Right/mortality , Ventricular Dysfunction, Right/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL